3.639 \(\int \frac{x^{11}}{(1-x^3)^{4/3} (1+x^3)} \, dx\)

Optimal. Leaf size=130 \[ -\frac{1}{5} \left (1-x^3\right )^{5/3}+\frac{1}{2} \left (1-x^3\right )^{2/3}+\frac{1}{2 \sqrt [3]{1-x^3}}+\frac{\log \left (x^3+1\right )}{12 \sqrt [3]{2}}-\frac{\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}-\frac{\tan ^{-1}\left (\frac{2^{2/3} \sqrt [3]{1-x^3}+1}{\sqrt{3}}\right )}{2 \sqrt [3]{2} \sqrt{3}} \]

[Out]

1/(2*(1 - x^3)^(1/3)) + (1 - x^3)^(2/3)/2 - (1 - x^3)^(5/3)/5 - ArcTan[(1 + 2^(2/3)*(1 - x^3)^(1/3))/Sqrt[3]]/
(2*2^(1/3)*Sqrt[3]) + Log[1 + x^3]/(12*2^(1/3)) - Log[2^(1/3) - (1 - x^3)^(1/3)]/(4*2^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.101246, antiderivative size = 130, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 9, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.409, Rules used = {446, 87, 43, 783, 78, 55, 617, 204, 31} \[ -\frac{1}{5} \left (1-x^3\right )^{5/3}+\frac{1}{2} \left (1-x^3\right )^{2/3}+\frac{1}{2 \sqrt [3]{1-x^3}}+\frac{\log \left (x^3+1\right )}{12 \sqrt [3]{2}}-\frac{\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}-\frac{\tan ^{-1}\left (\frac{2^{2/3} \sqrt [3]{1-x^3}+1}{\sqrt{3}}\right )}{2 \sqrt [3]{2} \sqrt{3}} \]

Antiderivative was successfully verified.

[In]

Int[x^11/((1 - x^3)^(4/3)*(1 + x^3)),x]

[Out]

1/(2*(1 - x^3)^(1/3)) + (1 - x^3)^(2/3)/2 - (1 - x^3)^(5/3)/5 - ArcTan[(1 + 2^(2/3)*(1 - x^3)^(1/3))/Sqrt[3]]/
(2*2^(1/3)*Sqrt[3]) + Log[1 + x^3]/(12*2^(1/3)) - Log[2^(1/3) - (1 - x^3)^(1/3)]/(4*2^(1/3))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 87

Int[(((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_))/((a_.) + (b_.)*(x_)), x_Symbol] :> Int[ExpandIntegr
and[(e + f*x)^FractionalPart[p], ((c + d*x)^n*(e + f*x)^IntegerPart[p])/(a + b*x), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[n, 0] && LtQ[p, -1] && FractionQ[p]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 783

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m +
 p)*(f + g*x)*(a/d + (c*x)/e)^p, x] /; FreeQ[{a, c, d, e, f, g, m}, x] && EqQ[c*d^2 + a*e^2, 0] && (IntegerQ[p
] || (GtQ[a, 0] && GtQ[d, 0] && EqQ[m + p, 0]))

Rule 78

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> -Simp[((b*e - a*f
)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(f*(p + 1)*(c*f - d*e)), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1)
+ c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f,
 n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || LtQ
[p, n]))))

Rule 55

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, -Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Dist[3/(2*b), Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1/
3)], x] - Dist[3/(2*b*q), Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && PosQ
[(b*c - a*d)/b]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rubi steps

\begin{align*} \int \frac{x^{11}}{\left (1-x^3\right )^{4/3} \left (1+x^3\right )} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{x^3}{(1-x)^{4/3} (1+x)} \, dx,x,x^3\right )\\ &=\frac{1}{3} \operatorname{Subst}\left (\int \left (-\frac{x}{\sqrt [3]{1-x}}-\frac{x}{\sqrt [3]{1-x} \left (-1+x^2\right )}\right ) \, dx,x,x^3\right )\\ &=-\left (\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{\sqrt [3]{1-x}} \, dx,x,x^3\right )\right )-\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{\sqrt [3]{1-x} \left (-1+x^2\right )} \, dx,x,x^3\right )\\ &=-\left (\frac{1}{3} \operatorname{Subst}\left (\int \left (\frac{1}{\sqrt [3]{1-x}}-(1-x)^{2/3}\right ) \, dx,x,x^3\right )\right )-\frac{1}{3} \operatorname{Subst}\left (\int \frac{x}{(-1-x) (1-x)^{4/3}} \, dx,x,x^3\right )\\ &=\frac{1}{2 \sqrt [3]{1-x^3}}+\frac{1}{2} \left (1-x^3\right )^{2/3}-\frac{1}{5} \left (1-x^3\right )^{5/3}+\frac{1}{6} \operatorname{Subst}\left (\int \frac{1}{(-1-x) \sqrt [3]{1-x}} \, dx,x,x^3\right )\\ &=\frac{1}{2 \sqrt [3]{1-x^3}}+\frac{1}{2} \left (1-x^3\right )^{2/3}-\frac{1}{5} \left (1-x^3\right )^{5/3}+\frac{\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac{1}{4} \operatorname{Subst}\left (\int \frac{1}{2^{2/3}+\sqrt [3]{2} x+x^2} \, dx,x,\sqrt [3]{1-x^3}\right )+\frac{\operatorname{Subst}\left (\int \frac{1}{\sqrt [3]{2}-x} \, dx,x,\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}\\ &=\frac{1}{2 \sqrt [3]{1-x^3}}+\frac{1}{2} \left (1-x^3\right )^{2/3}-\frac{1}{5} \left (1-x^3\right )^{5/3}+\frac{\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac{\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}+\frac{\operatorname{Subst}\left (\int \frac{1}{-3-x^2} \, dx,x,1+2^{2/3} \sqrt [3]{1-x^3}\right )}{2 \sqrt [3]{2}}\\ &=\frac{1}{2 \sqrt [3]{1-x^3}}+\frac{1}{2} \left (1-x^3\right )^{2/3}-\frac{1}{5} \left (1-x^3\right )^{5/3}-\frac{\tan ^{-1}\left (\frac{1+2^{2/3} \sqrt [3]{1-x^3}}{\sqrt{3}}\right )}{2 \sqrt [3]{2} \sqrt{3}}+\frac{\log \left (1+x^3\right )}{12 \sqrt [3]{2}}-\frac{\log \left (\sqrt [3]{2}-\sqrt [3]{1-x^3}\right )}{4 \sqrt [3]{2}}\\ \end{align*}

Mathematica [C]  time = 0.0167046, size = 48, normalized size = 0.37 \[ \frac{-5 \, _2F_1\left (-\frac{1}{3},1;\frac{2}{3};\frac{1}{2} \left (1-x^3\right )\right )-2 x^6-x^3+13}{10 \sqrt [3]{1-x^3}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^11/((1 - x^3)^(4/3)*(1 + x^3)),x]

[Out]

(13 - x^3 - 2*x^6 - 5*Hypergeometric2F1[-1/3, 1, 2/3, (1 - x^3)/2])/(10*(1 - x^3)^(1/3))

________________________________________________________________________________________

Maple [F]  time = 0.025, size = 0, normalized size = 0. \begin{align*} \int{\frac{{x}^{11}}{{x}^{3}+1} \left ( -{x}^{3}+1 \right ) ^{-{\frac{4}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^11/(-x^3+1)^(4/3)/(x^3+1),x)

[Out]

int(x^11/(-x^3+1)^(4/3)/(x^3+1),x)

________________________________________________________________________________________

Maxima [A]  time = 1.43204, size = 161, normalized size = 1.24 \begin{align*} -\frac{1}{12} \, \sqrt{3} 2^{\frac{2}{3}} \arctan \left (\frac{1}{6} \, \sqrt{3} 2^{\frac{2}{3}}{\left (2^{\frac{1}{3}} + 2 \,{\left (-x^{3} + 1\right )}^{\frac{1}{3}}\right )}\right ) - \frac{1}{5} \,{\left (-x^{3} + 1\right )}^{\frac{5}{3}} + \frac{1}{24} \cdot 2^{\frac{2}{3}} \log \left (2^{\frac{2}{3}} + 2^{\frac{1}{3}}{\left (-x^{3} + 1\right )}^{\frac{1}{3}} +{\left (-x^{3} + 1\right )}^{\frac{2}{3}}\right ) - \frac{1}{12} \cdot 2^{\frac{2}{3}} \log \left (-2^{\frac{1}{3}} +{\left (-x^{3} + 1\right )}^{\frac{1}{3}}\right ) + \frac{1}{2} \,{\left (-x^{3} + 1\right )}^{\frac{2}{3}} + \frac{1}{2 \,{\left (-x^{3} + 1\right )}^{\frac{1}{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="maxima")

[Out]

-1/12*sqrt(3)*2^(2/3)*arctan(1/6*sqrt(3)*2^(2/3)*(2^(1/3) + 2*(-x^3 + 1)^(1/3))) - 1/5*(-x^3 + 1)^(5/3) + 1/24
*2^(2/3)*log(2^(2/3) + 2^(1/3)*(-x^3 + 1)^(1/3) + (-x^3 + 1)^(2/3)) - 1/12*2^(2/3)*log(-2^(1/3) + (-x^3 + 1)^(
1/3)) + 1/2*(-x^3 + 1)^(2/3) + 1/2/(-x^3 + 1)^(1/3)

________________________________________________________________________________________

Fricas [A]  time = 1.7085, size = 500, normalized size = 3.85 \begin{align*} -\frac{10 \, \sqrt{6} 2^{\frac{1}{6}} \left (-1\right )^{\frac{1}{3}}{\left (x^{3} - 1\right )} \arctan \left (\frac{1}{6} \cdot 2^{\frac{1}{6}}{\left (2 \, \sqrt{6} \left (-1\right )^{\frac{1}{3}}{\left (-x^{3} + 1\right )}^{\frac{1}{3}} - \sqrt{6} 2^{\frac{1}{3}}\right )}\right ) + 5 \cdot 2^{\frac{2}{3}} \left (-1\right )^{\frac{1}{3}}{\left (x^{3} - 1\right )} \log \left (2^{\frac{1}{3}} \left (-1\right )^{\frac{2}{3}}{\left (-x^{3} + 1\right )}^{\frac{1}{3}} - 2^{\frac{2}{3}} \left (-1\right )^{\frac{1}{3}} +{\left (-x^{3} + 1\right )}^{\frac{2}{3}}\right ) - 10 \cdot 2^{\frac{2}{3}} \left (-1\right )^{\frac{1}{3}}{\left (x^{3} - 1\right )} \log \left (-2^{\frac{1}{3}} \left (-1\right )^{\frac{2}{3}} +{\left (-x^{3} + 1\right )}^{\frac{1}{3}}\right ) - 12 \,{\left (2 \, x^{6} + x^{3} - 8\right )}{\left (-x^{3} + 1\right )}^{\frac{2}{3}}}{120 \,{\left (x^{3} - 1\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="fricas")

[Out]

-1/120*(10*sqrt(6)*2^(1/6)*(-1)^(1/3)*(x^3 - 1)*arctan(1/6*2^(1/6)*(2*sqrt(6)*(-1)^(1/3)*(-x^3 + 1)^(1/3) - sq
rt(6)*2^(1/3))) + 5*2^(2/3)*(-1)^(1/3)*(x^3 - 1)*log(2^(1/3)*(-1)^(2/3)*(-x^3 + 1)^(1/3) - 2^(2/3)*(-1)^(1/3)
+ (-x^3 + 1)^(2/3)) - 10*2^(2/3)*(-1)^(1/3)*(x^3 - 1)*log(-2^(1/3)*(-1)^(2/3) + (-x^3 + 1)^(1/3)) - 12*(2*x^6
+ x^3 - 8)*(-x^3 + 1)^(2/3))/(x^3 - 1)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{11}}{\left (- \left (x - 1\right ) \left (x^{2} + x + 1\right )\right )^{\frac{4}{3}} \left (x + 1\right ) \left (x^{2} - x + 1\right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**11/(-x**3+1)**(4/3)/(x**3+1),x)

[Out]

Integral(x**11/((-(x - 1)*(x**2 + x + 1))**(4/3)*(x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^11/(-x^3+1)^(4/3)/(x^3+1),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError